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In this study I investigated how students’ mathematical activities, and thereby their
mathematical understandings, change as a function of their participation in different
social configurations. I examined how the interplay between 2 social configura-
tions—local investigations at a computer simulation and whole-class discus-
sions—contributes to how 7th-grade students learn probabilistic reasoning. I used 2
case studies to investigate (a) how different forms of participation are linked to differ-
ent social configurations, and (b) how specific discourse practices and ways of rea-
soning propagate across the classroom and are adopted by individual students. The
analyses suggest that classroom mathematical practices are developed, in part, for the
social or communicative purpose of settling disputes and not purely for their rational
or cognitive value to individuals. Results also provide insight into how to design and
orchestrate classroom practice, particularly computer-mediated inquiry, to foster in-
dividual learning that is situated within a classroom community oriented toward the
construction of a shared understanding of probability.

The learning sciences are just beginning to address the intersection of individual
conceptual development and the development of collective, community practices.
Recent theoretical work supports the view that developing a deep conceptual un-
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derstanding of discipline-specific concepts is tied to participation in the discourse
practices of disciplinary communities (Greeno & Hall, 1997; Hall, 1999; Lave &
Wenger, 1991; Roth, 2001). This theoretical perspective has proven particularly
productive in the mathematics and science education communities (Cobb,
Stephan, McClain, & Gravemeijer, 2001; Greeno & The Middle School Mathe-
matics through Applications Project Group, 1998; Lampert & Ball, 1998; Lehrer,
Schauble, Carpenter, & Penner, 2000; Roth & Bowen, 1995). However, there is a
growing community within educational research that holds that, in order to con-
tinue to make progress, the learning sciences need to move beyond extreme,
dichotomizing positions that exclusively examine individual knowledge construc-
tion or focus only on the ways culture constrains and enables development. In-
stead, we need to examine the ways in which individual and social processes are
mutually constitutive.

The main point of this article is to trace student-learning trajectories to document
both theeffects that individualshaveona learningcommunityand theeffects that the
community has on individuals. I demonstrated that individual students’ activities,
and thereby their mathematical understandings, change as a function of their partici-
pation in different social configurations. Furthermore, I investigated the ways in
which different classroom social configurations are interrelated and build off of one
another. To illustrate these points, I examined how two social configurations within
the classroom—local investigations at a computer simulation and whole-class dis-
cussions—shape how individual students learn probabilistic reasoning.

The empirical basis for my claims stems from my examination of two case stud-
ies that together present a picture of learning within the Probability Inquiry Envi-
ronment (PIE)—a computer-mediated, inquiry-oriented curriculum designed to
help seventh-grade students learn basic probability (Vahey, Enydey, & Gifford,
2000). By looking in detail at student conversations across multiple social configu-
rations, I highlighted how interacting with others influences individual student
learning, but in a manner that does not ignore the ways in which an individual’s in-
terpretation of events also shapes this interaction. A major implication of my find-
ings is that classroom mathematical practices are developed, in part, for the social
or communicative purpose of settling disputes and not purely for their rational or
cognitive value. Furthermore, the results reveal the complex relationship between
local problem solving and the development of community practices through
whole-class discussion. The case studies in this article are important in that they
demonstrate how the students can be both actively involved in their own learning
and actively involved in shaping the practices of their community.

The organization of this article is as follows. In the first section, I explain the
theory and previous studies that ground this work. In the second section, I describe
the context for my analysis—a study that my colleagues and I carried out to help
middle school students learn probability (Vahey, Enyedy, & Gifford, 2000). In the
third section, I outline the methods for my analysis. These methods attempt to syn-
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thesize the perspectives of (a) constructivism, with its focus on active learners; (b)
sociocultural psychology, with its focus on an active culture and history that
shapes individual learning; and (c) conversational analysis, with its focus on the
ways in which participants—their minds, cultures, and histories—are made pres-
ent in the moment. In the fourth section, I present two case studies that together
elucidate the role that social configurations played in the learning process. Finally,
in the fifth section, I relate the findings back to the sociocultural theories that
ground this article and discuss the implications for designing learning environ-
ments and improving classroom practice.

THEORETICAL FRAMEWORK: FROM FORMS OF
DISCOURSE TO FORMS OF THINKING

At the heart of this article is a straightforward extension of one of the core assump-
tions of the sociocultural and situated perspectives on cognition and learning—the
genetic law of cultural development. Vygotsky (1978) proposed that higher order
psychological functions (e.g., probabilistic reasoning) are produced first in social
interaction before being internalized by individual students. According to
Vygotsky, internalization involves the transformation of communicative language
into inner speech and semiotically mediated thinking. However, what I mean by in-
ternalization here is different than the conventional use of the term. Contemporary
interpretations of Vygotsky’s writings suggest that internalization does not imply
that an external structure has been moved inside one’s head (Cazden, 1997; Wertsch
& Stone, 1999). Instead, it implies a transformation from socially supported perfor-
mance to relatively autonomous, competent behavior. That is, higher order psycho-
logical functionsare initially social in thesense that (a)participation inculturallyde-
fined, social activities foreshadow an individual’s autonomous competence; and (b)
before individuals are able to participate in an activity autonomously, they must first
learn tobring their social interactionsunder self-control through theuseofculturally
developed sign systems. Although this perspective does not deny that learning in-
volves changes within a person, cognition and social participation are viewed dy-
namically. It highlights the shift, or transformation of activity, from overt socially
supported behavior to more autonomous behavior covertly supported by the adop-
tion of culturally specific, sign systems and forms of discourse.

The zone of proximal development (ZPD), from this perspective, creates the
conditions for learning. The ZPD refers to the difference between what a person
can do with proper assistance and what the person is capable of alone. However,
this difference is not just a gap that defines the leading edge of development, but it
also identifies a zone for interaction. The concept of the ZPD defines potential
learning and development in terms of a learner’s joint activity with other people.
By participating in activities that are beyond an individual’s current range of com-
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petencies, students use the structures of the material and social world to align their
activities with a cultural system. By aligning one’s individual participation with
the ongoing organization of a distributed system that extends beyond the individ-
ual’s mind, that individual eventually learns how to perform these same functions
competently when other aspects of the system are absent (Cazden, 1997;
Vygotsky, 1978; Wertsch, 1985; Wertsch & Stone, 1999). The means for develop-
ment, then, is sustained social interaction and the continual shift toward taking
more responsibility for one’s own activity.

I did not set out to settle the question of whether or not all higher order psycho-
logical functions, or even all types of mathematical reasoning, are first social func-
tions. Instead, I examined a number of examples in which students’ competence in
probabilistic reasoning can be traced directly back to their interactions with each
other, the teacher, and the PIE software. The analyses attempt to extend our under-
standing of the social origins of cognition by further elaborating on how the social
practices of mathematics are developed through interactions that occur across mul-
tiple social configurations.

In many cases, what people align themselves with, when they bring their behav-
ior and thinking in line with that of others around them, are cultural practices. I
used the term practice throughout this article to refer to normatively organized
forms of social behavior. Said another way, practices define the legitimate
interactional and physical moves within a given culturally defined context. For this
article, I emphasized rule-based practices and, in particular, mathematical prac-
tices. I used the phrase mathematical practice to refer to the shared terminology,
speech acts, methods, techniques, and ritualized ways of interacting that a class-
room, as a community, has developed to achieve certain mathematical ends. Partic-
ular cultural tools provide an infrastructure for these normative ways of reasoning.
However, a close examination of the role of these tools is beyond the scope of this
article. In this article, I traced how students develop a method for determining the
probability of an event. Their method involves first determining all the possible
outcomes for a random event (e.g., a coin flip) and then expressing the probability
as the number of favorable events divided by the total number of possible events
(e.g., the probability of getting a tail is one half). Mathematical practices are criti-
cal to understand in that, from the perspective of the curriculum, the generation and
adoption of mathematical practices is the explicit objective of the activities.

In defining mathematical practices as a social construct, I did not try to
dichotomize the individualand thecommunity.However, acriticaldifferencedistin-
guishes practices from an individual student’s locally produced way of reasoning.
Practices are descriptions of socially established and taken-as-shared ways of rea-
soning (Bowers, Cobb, & McClain, 1999)—they refer to the norms of a community.
Full participation in a practice implies that one is oriented toward certain aspects of
experience, frames one’s activity in particular ways, and interacts with the physical
and social environment in appropriate ways (Stevens & Hall, 1998). In contrast, an
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individual student’s use or understanding of a practice is what Bowers et al. referred
to as a psychological correlate—a description of how an individual understands her
own and other’s social performances. As many scholars have pointed out, the rela-
tionship between individual actions and collective practices is reflexive. The ways
an individual understands his or her own activity and the meaning of that activity in
the context of the community are not separate. First, they are genetically related in
the sense that how one understands one’s own activity is influenced by how others
perceive and react to it. Second, they are interactionally coconstituted. As Saxe
(2002) put it, “individual actions are constitutive of collective practices. At the same
time the joint activity of the collective gives shape and purpose to individuals’goal
directed activity” (p. 277). However, to avoid confusion and ambiguity, I maintained
an analytic distinction between the practices and individual’s psychological corre-
lates of practices throughout the article.

In this article, I also referred to discourse practices as speech acts that are orga-
nized by and support students’ participation in the larger communities outside of
the classroom. Although theoretically distinct, mathematical and discourse prac-
tices are not mutually exclusive. Take, for example, a student who argues with her
partner that a game of chance is fair because all the possible outcomes are equally
divided between two teams. This student is using a specific way of framing the
game (i.e., all the possible outcomes) to organize their shared understanding about
what is important to consider in the situation. The student’s talk must be under-
stood in terms of its relation to her ongoing participation in a classroom where this
type of interaction has become commonplace to facilitate the community’s joint
activity of talking about games of chance. At the same time the student is engaging
in an argument. She is making a claim and providing a warrant (Toulmin, 1958).
Arguing is an example of a discourse practice that extends beyond the community
of the classroom, but it is also recognized within the classroom. These two types of
practices, mathematical and discourse practices, are the primary analytical levels
at which I examined my data.

It is worth pointing out that norms are not objectively good. They can be aligned
with or counterproductive to a given objective. Mathematical and discourse prac-
tices that arise in the classroom are no exception. For example, norms can develop
that are counterproductive to conceptual learning. One such well-documented
norm is the common classroom discourse pattern of initiate–respond–evaluate
(IRE; Mehan, 1979). This pattern of discourse fits the definition of a norm and is
well adapted to meet certain functions, such as classroom management, within a
traditionally organized whole-class discussion. However, it has been shown that
the IRE pattern of discourse is not well aligned with the goals of the current mathe-
matics education community, which values a deep conceptual understanding of the
material rather than the speed and accuracy of calculations (e.g., Forman,
Larreamendy-Joerns, Stein, & Brown, 1998). It is important, therefore, to keep in
mind that the value of mathematical and discourse practices analyzed in this article
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stand in relation to a set of assumptions about what mathematics is and how it is
best learned.

One step more general than discourse and mathematical practices are activity
types or, for simplicity, activities. I used the term activity to describe a social event
that may include many constituent strips of discourse and practices within it. How-
ever, regardless of the number of discourse practices in play, each activity should
be a recognizable event or occasion for social interaction. For example, students
engaging in making predictions before an experiment was a prototypical activity
examined in this article. This activity may be enacted in multiple ways using dif-
ferent combinations of mathematical and discourse practices. In many ways, my
use of the term activity is comparable to the notion of a task as it is used in much of
the psychological literature. My use of the term activity instead of task, however, is
intended to highlight that a task cannot be considered to be located exclusively
within an individual.

Activities are both distributed and emergent. They are distributed in the sense
that activities are accomplished through the coordinated interactions of multiple
participants1 who may have different orientations toward the activity. The meaning
of one participant’s actions is determined by the matrix created by their joint inter-
action and shared understanding of the context. For instance, Hutchins (1995) de-
tailed the ways in which navigating a large ship into a harbor involves the coordi-
nated actions of many participants. The division of labor is such that no one
participant is directly responsible for the whole activity, and each participant’s ac-
tions only make sense in relation to the activities of the others. The same is true for
many interactions within a classroom. Activities are emergent in that during ongo-
ing interaction the activity can change or the participant’s understanding of the
meaning of the activity can change. In this article, activities were different than the
typical experimental task in that they were not defined by a prespecified set of ac-
tions and constraints that will achieve a goal determined by the experimenter (cf.
Newman, Griffin, & Cole, 1989).

A limiting factor in the range and form of activities are social configura-
tions—the social and physical settings that the participants use to govern which
discourse practices and activities they perceive to be relevant to the situation. The
two social configurations explored in this article are (a) students working in pairs
at computer simulations (local configuration), and (b) the whole-class coming to-
gether for a discussion (public configuration). These two configurations are im-
portant to my analysis because they constrain which types of activities take place
and when.
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These different levels of description are used to provide a rich and detailed ac-
count of the development of a single mathematical practice as it emerges from ac-
tivity that is stretched across different social configurations and activities. Similar
approaches that coordinate between multiple levels of analysis have been taken by
other researchers (e.g., Barab, Hay, Barnett, & Keating, 2000; Hall, 2001). In their
study of how students learned about the solar system and the phases of the moon,
Barab et al. examined how local group work informed public talk. They outlined
two important types of “knowledge diffusion” (p. 744) within and across levels of
social organization. First, they outlined cross-group collaboration in which sepa-
rate, local groups shared resources to complete their modeling activities. Second,
they discussed the ways in which knowledge was shared when local groups came
together in public settings to discuss and debate their findings. In this latter case,
different local models were fused together in the public space.

Another important study that coordinated multiple levels of social organization
to understand how different types of discursive practices create different opportu-
nities for teaching and learning is Hall and Rubin’s (1998) analysis of Magdalene
Lampert’s classroom. Hall and Rubin coordinated analyses of private, local, and
public settings to trace the development of the concept of the mathematical struc-
ture of rate. Adopting the participant’s perspective, Hall and Rubin traced two cy-
cles of activity that spanned across the three settings and demonstrated how the
students absord the relevant organization of mathematical discourse and content.

Both Barab et al. (2000) and Hall and Rubin (1998) followed the flow of activ-
ity across these settings from private, individual activity to local activity to public
activity. In this article, I also examined how a mathematical practice emerges from
local activity and spreads throughout the classroom via a public discussion. Fur-
thermore, the argument is extended to include a reciprocal analysis of how local
activities are transformed by public activity. More generally, I demonstrated that
coordinating different levels of description is vital to our understanding of how in-
dividuals learn mathematics through participation in a classroom community (cf.
Barab & Kirshner, 2001; Hall, 2001; Rogoff, 1995; Vygotsky, 1978).

THE STUDY AND THE PIE SOFTWARE

The PIE was implemented as a 3-week probability curriculum that included com-
puter-simulation games, hands-on games, and whole-class discussions. Each com-
puter simulation was designed to focus on a particular, problematic concept of
probability. Note that PIE is a promising environment to explore learning in differ-
ent social configurations for a number of reasons.

First, probability is arguably among the most used mathematical skills in daily
life. Every day people are called on to make decisions based on statistical and
probabilistic information. Public opinion polls, advertising claims, medical risks,

COMPUTER-MEDIATED MATH CLASS 367



and weather reports are just a few of the activities that draw on an understanding of
probability. In addition, probability is applicable to many academic disciplines
such as psychology and engineering. It is routinely used in the professional activi-
ties of biologists, geneticists, psychologists, and researchers of almost any disci-
pline. However, many studies show that both children and adults commonly make
mistakes when applying probability (Konold, 1989; Metz, 1998; Tversky &
Kahnemann, 1982).

Second, probabilistic reasoning can be an authentic activity for young students.
Much of students’ interest and ideas about how to reason under uncertainty stems
from playing games. Games and game playing are an ubiquitous part of childhood
in most American cultures, and in many of the games children play the outcome of
the game is based on chance—on the outcome of random devices such as dice,
cards, or spinners. The PIE, then, builds on the interests of young students to help
them develop probabilistic reasoning skills that will be invaluable to them in their
professional and daily activities as adults.

Perhaps more important for this argument, the PIE software was designed to pro-
mote specific interactions in the classroom culture. As designers, Vahey et al. (2000)
framed the PIE as a context for collaboration. We attempted to design the software to
spark and support productive conversations between students and between students
and their teacher. For example, we wished to make agreements and disagreements
visible (Bell & Linn, 2000) and solvable within the interactional space afforded by
the interface.Onewayweattempted tooperationalizemakingdisagreementsvisible
was to create one space where students had to construct a shared response, but gave
each student “agreement bars” to record the extent to which the shared answer re-
flected their own thinking. This sometimes led to extended negotiation when one
studentpulled theagreementbardowntoshowshedisagreedwith theprediction that
her partner constructed without her input. To make disagreements productive and
solvable within the environment, we structured students’predictions to have both a
claimandawarrant (Toulmin,1958).Wealsoprovideda largesetof representational
resources that served as a ground and data for their arguments. For a more detailed
description of the environment in relation to our pedagogical objectives and learning
philosophy, see Vahey et al. (2000).

In the PIE, students actively investigate probability by trying to figure out if
particular games of chance are fair to all participants. The students’ collaborative
activity is structured around: articulating their intuitions, systematically testing
their ideas by gathering and analyzing empirical data, and communicating their
revised understanding of the domain to their classmates. This combination of ac-
tive, local investigation and public presentation makes the PIE an interesting en-
vironment within which to explore student dialogue and the interplay between
social configurations.

In the computer games, student investigations into the fairness of specific
games of chance were structured such that the student was guided through a cycle
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of inquiry (cf. White, 1993). Each PIE activity consisted of six steps: Rules, Try,
Predict, Play, Conclude, and Principles. Each one of these steps serves as an identi-
fiable stage that supports certain kinds of interaction.

In Rules, the software shows the students an animated introduction to the cur-
rent game. In Try, the students get a chance to experiment with the representations
and controls of the simulation. This was done to allow the students some amount of
familiarity with the environment before asking them to make predictions. In Pre-
dict, we chose questions that highlight aspects of the game that are particularly sa-
lient to a normative understanding of probability. In Play (Figure 1), the software
simulates different games of chance. At this stage, the PIE provides several re-
sources and capabilities to facilitate productive collaboration including coins,
probability trees, bar charts, and frequency tables (Enyedy, Vahey, & Gifford,
1997). In Conclude, the students compare their predictions to the data from the
simulation. Finally, in Principles, the environment scaffolds the students to jointly
articulate what they can generalize from their activity.

These simulations are then followed by hands-on games in which students flip
coins, roll dice, and so on as they investigate aspects of probability without using
the computer environment. Throughout the curriculum, the students also partici-
pate in whole-class discussions in which each pair reports their findings, compares
their findings to that of other groups, and discusses the general mathematical prac-
tices that can be derived from this game and applied to the analysis of subsequent
games. The computer simulations, hands-on activities, and whole-class discus-
sions each lasted approximately 40–50 min. Over the 3 weeks, the students spent
approximately 8–10 hr of focussed activity engaged with the curriculum and each
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other around issues of probability (for a more thorough description of the environ-
ment, see Vahey et al., 2000).

Setting: Students, School, and Teacher

ThePIEcurriculumwas implemented in two7th-grademathematicsclasses inanur-
ban middle school. The same teacher taught both ethnically diverse classes: 42%
White, 29% African American, 13% Asian, 9% Hispanic, and 7% other. In addition-
ally, many of the students were from lower socioeconomic status households. Thirty
eight percent of the students in the school received free or reduced-price lunches.

The middle school mathematics classrooms of this school did not have comput-
ers. Instead, on days when computer activities were scheduled, the class visited the
school’s computer lab. The computer lab consisted of about 20 older model com-
puters. The computers were positioned around the perimeter of the room. In the
center of the room were some additional tables. On days when the students did not
use the PIE software, the class was held in the regular classroom.

METHODS

Two classes using the PIE software were extensively videotaped. The two research-
erswhomade these recordings (acolleagueandmyself)werenonparticipantobserv-
ers (Becker & Geer, 1969). We were present during all sessions of the PIE curricu-
lum, but we provided no assistance with the classroom instruction. However, we
were participants in the classroom in a less formal sense of the term. We were there
every day, and although we rarely directed questions to the students, we did answer
questions directed to us. It was known throughout the class that the two researchers
were also responsible for the design of the PIE curriculum and computer games. One
result of this was that the teacher would occasionally consult one of us in front of the
class on some issue (e.g., how the random generator of the computer worked). In ad-
dition, we were often asked to provide technical help on the computers. Therefore,
although we did not participate in the cognitive or content-related issues of the class,
wedidhavearelationshipandarolewithin theclass that shouldbekept inmindwhen
reviewing the transcripts of the video recordings.

Data Sources

Video data was collected from local (e.g., pairs working at a computer) and
global (e.g., whole-class discussion) perspectives. For all of the PIE games and
hands-on activities (except for the whole-class discussions) the students worked
in pairs. We followed four focal student pairs, two pairs from both PIE class-
rooms, each class period throughout the entire curriculum. The four focal stu-
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dent pairs, referred to throughout this article by pseudonyms, were nominated by
the teacher to represent a range of gender, ethnicity, and ability levels. These
pairings remained the same throughout the 3 weeks, except in cases of absences
or what the teacher considered disruptive behavior. The degree to which the fo-
cal pairs represent a wide range of gender, ethnicity, and ability can be seen in
Table 1. An additional camera rotated though the nonfocal pairs in each class-
room recording each pair of students during their work for 5–15 min at a time.
This videotaping strategy provided both detailed case studies and a sampling of
the rest of the classroom. For this article, however, I analyzed the interactions of
only two of the four possible focal pairs.

These two case studies were not chosen for analysis based on the students’ per-
formance on the posttest. Instead, the cases were chosen because the students en-
gaged with the software and with each other in a way that made their learning pro-
cess available for analysis. First, the students in these cases adopted the
instructional objective of the activity in that they were actively committed to figur-
ing out if the games were fair or not. Second, they were engaged with each other in
the process. Furthermore, as shown in Table 1, their performance on standardized
tests and our preassessments put them reasonably close to the mean (with the ex-
ception of Rosa and Mike). One student, Mike, scored very poorly on standardized
tests administered before the intervention. In additional, although Mike scored at
the mean on the pretest, he was rated as a low-achieving student by the teacher.
Three of the six students that were involved in these two case studies, Will, Derek,
and Maria, had standardized test scores close to the mean, pretest scores at the
mean, and were rated by the teacher as medium-level mathematics students. Two
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TABLE 1
The Four Focal Pairs That Were Videotaped

Focal Group Name Gender Ethnicity
Standardized Test

Scorea
Pretest

(Out of 20)
Posttest

(Out of 20)

1b Mikec Male African American 14 8 6
1 Robert Male African American 55 5 9
2b Derek Male African American 51 9 13
2b Will Male African American 61 8 11
3 Jo Female Latina 51 5 11
3 Sandy Female African American 63 6 7
4b Maria Female Latina 64 10 12
4b Rosa Female Latina 97 14 15
Class average 62 10 14

aThe score reported is based on the average of reading, comprehension, writing, math, and problem solving
scores on theIndividual Test of Academic Skills from School Research and Science Corporation. bThese mark
the students analyzed in case studies described in this article. cMike, but not his partner, is shown here because
he partnered with Rosa for the Three-Coin game in Excerpt 6.



students in Table 1, John2 and Rosa, were arguably better students. They scored 1
standard deviation above the norm on both the pretest and standardized test scores,
and they were rated as high performers by the teacher. However, during the pretest
and during the activities all six students expressed many of the same naïve and lim-
ited intuitions about probability (for examples of common intuitions, see Konold,
1989; Konold, Pollatsek, Well, Lohmeier, & Lipson 1993; Vahey et al., 2000).

However, it is important to be clear that the unit of analysis for these cases is not
simply the individual students. Instead, I focused on the learning trajectories of the
students. These trajectories often span across multiple combinations of actors, ac-
tivities, and settings. By using learning trajectories as my unit of analysis, rather
than individual students, I attempted to restore and examine ways the context and
social interaction are involved in a single student’s conceptual change, without ig-
noring the individual’s contribution to creating the context and interaction (cf.
Barab, Hay, & Yamagata-Lynch, 2001; Cobb et al., 2001). Thus, my choice of ana-
lyzing learning trajectories is consistent with a, “commitment to agent-in-settings
as unit of analysis, and to the contention that cognition occurs and is given mean-
ing through the dynamic relations among the knower, the known, and the evolving
context which knowing occurs” (Barab & Kirshner, 2001, p. 9).

During the local investigations, the video cameras were arranged in such a
way that the computer screen (or work surface in the case of hands-on activi-
ties), faces, and gestures of the students were visible on the tape recordings.
During the whole-class discussions, a camera was set up at the side of the room
with microphones in both the front and back of the room to record clearly all the
dialogue of the classroom.

A database integrated in the PIE software captured all student actions within the
PIE.Thedatabase recordedeverypair’spredictions,observationnotes, conclusions,
principles, agreement bar entries, and navigation routes through the different modes
and screens of the environment. The main use of the students’work at the computer
was not to assess student understanding during the transitional points along the stu-
dents’ learning trajectory. Only the thinnest traces of the students’ reasoning and
competencies that were displayed in their dialog and interaction with each other
were actually inscribed into the database. Rather, the database was invaluable as a
complement to the video recordings in that it helped to recreate the representational
state for any given moment that we wished to examine in the video record. In other
words, the database in this study was used primarily to help recreate the material cir-
cumstances of any episode of interaction that we qualitatively analyzed in detail.

I used a set of overlapping research methods for my analysis of the video data.
First, I identified segments that were good candidates for a close analysis of interac-
tion (Erickson, 1992, 1998; Erickson & Shultz, 1981; Goodwin & Heritage, 1990;
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Jordan & Henderson, 1995). These excerpts were chosen because they fell into theo-
retically meaningful categories and because I considered them to be critical interac-
tions along the students’learning trajectories. For the most part, they consist of when
students are making predictions, considering new information, reflecting on or re-
considering their ideas, drawing new inferences, or arguing with their peers

After choosing the excerpts, I examined the interactions to produce my initial
coding scheme or analytic categories that elucidated how students were learning
mathematics in this particular case (Charmaz, 1983; Erickson, 1992, 1998;
Erickson & Shultz, 1978/1997; Glaser & Strauss, 1967; Hall, 2001). This analysis
provides a way to illuminate critical moments along a learning trajectory and the
important analytical dimensions of these moments. What is presented is the mini-
mum set of interactions that preserves the critical moments for these particular stu-
dents’ learning trajectories. Many noteworthy interactions and analyses have been
omitted for the purposes of this discussion.

Obviously, this data reduction is a necessary part of research and concurrently
introduces a subjective choice on the part of the analyst that should be open to scru-
tiny. The trustworthiness and reliability of the decisions and choices made in this
article came from three aspects of my methods. First, I relied on a network of inter-
connected data sources that are triangulated and coordinated to support my conclu-
sions. These sources include the research literature, student scratch materials,
worksheets, predictions, and conclusions inscribed into the PIE software, and the
students’ pre- and posttests. Initial conjectures are tested against these multiple
data sources for confirming and contradictory interpretations. Second, other re-
searchers vet the interpretations of the case in informal and formal data analysis
sessions. These sessions often either produce additional evidence for an interpreta-
tion or provide alternative interpretations that are then tested against the record.
Third, interpretations of activity are tested by looking “downstream” at the stu-
dent’s subsequent interactions to see if the interpretation is consistent with the stu-
dent’s own subsequent actions and talk.

I caution readers about the representativeness of these cases. I did not intend to
suggest that these two trajectories represent the only possible trajectories for learn-
ing probability or even that these two account for all the pathways within these two
classrooms. It is clear that issues of generalizability need to be addressed using fur-
ther case studies as well as other methods.

Instead, the power of these cases resides in the ways they identify and demon-
strate some of the important interrelations between individuals and their participa-
tion in different types of practices and configurations within a learning community.
It is within this trajectory of participation—distributed over time, space, and multi-
ple social configurations—where we begin to be able to see the ways in which indi-
viduals construct disciplinary knowledge, the ways in which a community shapes
and leads that knowledge construction, and the ways in which individuals contrib-
ute and shape their community.
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ANALYSES

The primary learning objective for the part of the curriculum that sets the stage for
these cases is a conceptual understanding of the outcome space and its value in rea-
soning probabilistically. The outcome space is a classic way of reasoning about
probability based on considering all the possible outcomes of an event, partitioning
these outcomes into favorable and unfavorable events, and quantifying the relation-
ship between favorable outcomes and the total number of possible outcomes as a
fraction. For example, there are four possible outcomes (i.e., the outcome space) of
two coin flips: heads–heads, heads–tails, tails–heads, and tails–tails. If you wished
topredict theprobabilityofanevent, suchas the twocoins landingwith thesameside
face up, you first might partition the four outcomes into favorable and unfavorable
events (e.g., heads–heads and tails–tails vs. heads–tails and tails–heads). You could
then quantify the favorable events and express the probability as a fraction—as the
number of favorable outcomes over the total number of possible outcomes (i.e., two
fourths). This way of reasoning is one of the primary methods endorsed by the math-
ematicscommunity(NationalCouncilofTeachersofMathematics [NCTM],2000).

However, establishing that the PIE was a successful way to help students learn
probability is not the primary concern of this article. The analysis here is con-
cerned with how students learn in this context. What aspects of the software con-
tributed to student learning? And how did the manner in which the software was in-
tegrated into the classroom community mediate these learning outcomes?

To answer these questions, I followed two pairs of students as they learned how
to use the outcome space to reason about probability. In particular, I used these
cases to examine the way that interactions are distributed over time and across
physical and social configurations. In the first case study, the interactions were
stretched across two radically different social configurations—local investigations
of games of chance at the computer and whole-class discussions. Interactions
across these two social configurations dramatically show the ways in which the so-
cial configuration can shape interactions and thereby influence student learning.
Previous work in this area has noted ways that physical3 and social configurations
restrict participation, but it has not explicitly demonstrated the connection between
participation and learning (e.g., Roth, McGinn, Woszczyna, & Boutonné, 1999).
In the second case study, I closely examined the local context to illuminate the
ways that discourse and mathematical practices interact during student learning.
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Case Study 1, Rosa and Maria:
From Models of to Models for

In this case, the students developed empirical models of the game and empirical
methods to produce probabilistic inferences using computer activities. However,
in the whole-class discussions, the students (with the teacher’s help) developed
generalized models for reasoning and making probabilistic inferences based on the
outcome space. These interactions show that the two social configurations play
very different roles in student learning. Specifically, students’ locally produced
ways of reasoning were transformed into mathematical practices in the public
arena of the whole-class discussions.

A critical feature of mathematical practices is that they are prospective. Prac-
tices address generalized methods that will be applicable to many future situa-
tions. In contrast, most of the ways students reasoned while completing their lo-
cal investigations were reflective, descriptive models of their activity, of the
game, or of the data they produced. That is, at the computer the students were
focused on producing retrospective descriptions of things that had already hap-
pened. Mathematical practices, conversely, are models for reasoning and arguing
about specific mathematical ideas that will be generally applicable to future situ-
ations (Bowers et al., 1999). As Cobb (2002) pointed out, mathematical prac-
tices integrate at least three levels of community norms. First, mathematical
practices are defined by a community’s joint enterprise—a normative purpose.
Second, they involve recognized patterned ways of interacting—a normative par-
ticipation structure. In Cobb’s empirical work he often concentrated on norma-
tive standards for argumentation. Third, mathematical practices involve particu-
lar ways of reasoning and using tools—a normative set of rules and tools to
solve reoccurring problems. Although it is true that every prospective, general-
ized practice must be instantiated in a specific situation, the difference between a
model of one’s activity and a prospective mathematical practice is that mathe-
matical practices are designed to make disparate situations similar.

Mathematical practices can be seen as producing sameness across a variety of
situations that are similar in one or more dimensions (Lobaoto, 1997). In contrast,
local models of a situation can be seen as a way of understanding each situation as a
unique event. From this view, models for are seen to play a central role in general-
ization and transfer. The process of mathematical generalization has to do with
constructing continuity by construing different situations to be the same. Learning
what exactly about a situation generalizes is often arranged by social and cultural
contexts (Jurow, 2002). In particular adults often engineer transfer by pointing out
similarities across contexts, sequencing activities in particular ways, and pointing
out when prior knowledge is relevant (Brown, 1989; Lobaoto, 1997). These social
interactions link contexts together to allow for comparisons to be made and conjec-
tures of sameness to be constructed (Jurow, 2002). Eventually, these social sup-
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ports are fused with the material and symbolic tools to create representational
practices that are applied across contexts as generalized models for reasoning.

This shift from individual ways of reasoning as models of activity to mathemati-
cal practices for reasoning is found in the PIE data set. The two main types of mod-
els of activity that the students engaged in were modeling how the game worked
and the data produced by the simulation. The model for reasoning that the class
eventually adopted is the use of the outcome space to determine the fairness of
games of chance. In the series of interactions that follow, I traced how students’ lo-
cal efforts to make sense of the PIE games are transformed into the normative prac-
tice for the classroom community.

Day 1: Models of

A prototypical example of a model of data can be found in an interaction in
which a pair of students interprets the data that the PIE simulation has produced
during their investigation of an activity titled the Two-Penny Game. In this game
two teams, the Twins and the Jumbles, compete for points. If two coin flips land on
the same side, the Twins score. If the coins land on opposite sides, the Jumbles
score. The game is, therefore, mathematically fair—two of the four equally likely
outcomes are assigned to each team. However, in their predictions the two girls in
this case study, Rosa and Maria, predicted that the game will be unfair because the
Jumbles have the outcomes the girls believe to be more likely.

Immediately prior to when I began my analysis of the first case (Excerpt 1), the
studentsareaskedhowmanytimeseachoutcomewillhappen.Theydevelop the idea
that mixed outcomes (e.g., heads–tails and tails–heads) will be more likely. This in-
tuition is quite common in students of this age, and it is related to what others have
calledaheuristicwayof reasoningbasedonwhat theyconsider tobea representative
outcome for a random event (Tversky & Kahneman, 1982). Having students con-
front and elaborate this intuitive way of reasoning was one of the primary reasons we
designed this game (Vahey, Enyedy, & Gifford, 1997; Vahey et al., 2000).

Excerpt 1: Rosa and Maria predict that the Jumbles will win.4

1. Rosa: Jumbles I think is gonna win…whoa I said they wouldn’t be ex-
actly the same, right?

2. Maria: Uh, yeah, no, um, could make it higher.
3. Maria: [manipulates the bar graph to show the Jumbles will score more

than the Twins by a ratio of 6 to 4].
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In Excerpt 1, Rosa’s prediction that heads–tails and tails–heads are more likely
leads the two girls to logically conclude that the Jumbles, who score when these
more likely outcomes occur, are likely to score more points. As part of their predic-
tion they constructed a bar graph of their quantitative expectations (see Figure 2).

These predictions are important in that they create a reason for the students to
engage in the data modeling that will go on during the simulation. They have cre-
ated an object, the bar graph, to compare with the actual results of the game. Fur-
thermore, they have a stake in that outcome.

Figure 3 and Excerpt 2 are examples of these students modeling the data from
their simulation. In the first part of the interaction, they are rooting and cheering
for the team they predicted will win (i.e., the Jumbles) and relating their interpreta-
tion of the data to their expectations.

Excerpt 2: Rosa and Maria rooting for the Jumbles and constructing models of the
data.

1. Rosa: (Gasp) It’s getting close! ’Cause the Jumbles are still ahead.
2. Computer: At 200 points the Jumbles are ahead. To keep playing, press the

start button.
3. Maria: The jumbles==[starts a new game]…Man! Come on. Man! Come

on.
4. Computer: At 20 points the Twins are ahead.
5. Rosa: Who cares about the Twins?  We don’t like the Twins!
6. Computer: At 200 points the Twins are ahead.
7. Rosa: By like two points!  Three points.
8. Computer: Do you think the game is fair or unfair now?
9. Maria: I think it’s fair.
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10. Rosa: The game is==
11. Computer: ==To play, press the start button.
12. Rosa: ==’Cause they won like, equal, you know.
13. Maria: It’s fair
14. Rosa: It’s fair.
15. Maria: Because…they won an equal amount.
16. Rosa: They’ve what?  Won an equal amount, right?
17. Maria: Yeah.
18.  Rosa: [Typed: We think the game is FAIR because, THEY HAVE WON

AN EQUAL AMOUNT.]

In turn 1, Rosa is calling attention to and interpreting the bar graph display as
she roots for the Jumbles to win. Rooting for one team was both a common and im-
portant activity during the simulation. In this case, Rosa makes an observation
about the progress of the game by interpreting an important representation and she
relates the information back to their expectations for the game. Rooting for one
team to win encourages the students to notice and interpret representations that
provide new insight about the phenomena that is relevant to their activity.

In turn 4, the computer stops their simulation to inform them who is ahead af-
ter 20 turns. Rosa, however, contests the computer’s interpretation of the data
and animates the chart of points per team to produce an alternate assertion (turn
7). This argument with the computer is extended in turn 12. In this part of the
exchange, Rosa references the chart that displays the number of games each
team has won.
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Their reaction to the computer’s statement prompts the students to collaborate
on an interpretation of the data and their understanding of the game. This model of
the game is based on a particular interpretation of the data that diminishes the im-
portance of the differences between the two team’s points and number of games
won. In generating this descriptive model of the data, the two girls change from a
nonnormative expectation about the game (i.e., that the Jumbles will win) based on
a nonnormative explanation (i.e., because mixed outcomes are more random and,
hence, more likely) to a normative expectation (i.e., that the game is fair) based on
an empirical explanation (i.e., that the teams have won the same number of games
and scored about the same number of points). This represents a significant step for-
ward along their learning trajectory. They have begun to attend to one of the major
resources, the data, that defines probability as a normative practice (cf. Stevens &
Hall, 1998). However, they have not yet demonstrated the normative method of
probabilistic reasoning from the point of view of the curriculum. Their current
method still requires the students to generate data empirically and make their infer-
ences based on that data. The two girls have not yet adopted a method of reasoning
that is generative and that will allow them to reason about new games without play-
ing them first. In other words, they have not yet developed a model for reasoning
that will allow them to make a number of future games the same.

Day 2: Whole-Class Discussion

Consensus building. The whole-class, public social configuration provided
a critical set of interactions that contributed directly to Rosa and Maria’s learning
trajectory. However, the analysis of these interactions necessitates a switch from
examining the development of individuals through social participation to examin-
ing the development of the community itself. The whole-class discussion can be
divided into three consecutive activities. First, each pair of students is given the op-
portunity to report their results. Second, as a class they attempt to reach a consen-
sus about what was important about this investigation and what the results mean.
Third, the teacher attempts to maneuver the students toward thinking about the
phenomena prospectively and to invent a mathematical practice.

In the following discussion, which occurs the next day, they report a number of
locally consistent accounts of what happened when creating a larger set of pooled
data from which every student can reason. In Excerpt 3, Rosa reports her local ver-
sion of the simulation.

Excerpt 3: Rosa reports their results.

1. Teacher:Did the Twins win any of them?
2. Rosa: They won, well actually they pretty much tied when the games

were at 200 flips. … But, at twenty flips, the Jumbles were always
ahead.
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3. Teacher:So, at twenty the Jumbles were ahead but by the end, it was ==
4. Rosa: ==almost even.
5. Teacher:Almost even.
6. Rosa: The Jumbles won seven games the twins won six.

However, many of the other pairs of students had drawn different conclusions
from their experiences with the simulation. Some students found that the Twins
had won more games, and others found that the Jumbles had won more games.
These conflicting findings juxtaposed in the public setting make the issue of the
game’s fairness—which for most students had been settled in the local social con-
figuration—problematic once again. Natasha makes this problem explicit in Ex-
cerpt 4. Natasha then reframes her local data in the larger trends of the class’
pooled data.

Excerpt4:Natashareasonsfromthepooledclassdata rather than justherowndata.

1. Teacher: Natasha, do you agree?  Fair or unfair?
2. Natasha: Um, I think it was sort of fair even though the Twins won a lot of

the games.
3. Teacher: Why do you think it was fair if the Twins won more?
4. Natasha: Well, because um, hearing about other people, they got Jumbles

more, and we got Twins more, so I think it’s about the same.

John and the whole class: Models for. More important than consensus
building, however, is the qualitative shift in the type of reasoning practices that are
developed exclusively in the whole-class discussion. In the next example, I exam-
ined the negotiation of a mathematical practice that provides a generative and pro-
spective method to make a normative inference about probabilistic situations like
the PIE games. In the following excerpt, negotiating a practice—like modeling the
data in the case of Rosa and Maria—still relies on collaboration to produce an
interactional explanation. However, it differs in that the focus of the exchange is on
developing a prospective model for reasoning about the fairness of games that can
be applied to future situations.

Although Rosa and Maria are not active participants in Excerpt 5, it is nonethe-
less an important part of their learning trajectory and is, therefore, included in the
case study. Even though they do not contribute to the exchange, they appear to have
listened closely. As we saw, immediately prior to this discussion the girls reason
about the game’s fairness based on the empirical data they have collected (i.e., the
number of points scored and the number of games won). Immediately following
the discussion, the girls reason about games of chance in a qualitatively different
way. They use the abstraction of the outcome space to organize their reasoning.
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Excerpt 5: John and the teacher publicly construct a practice that involves quanti-
fying the outcome space.

1. Teacher: Okay, um…let me ask you this. What if I just showed you this set
up. And you didn’t even play the game yet. I mean how many of
you predicted that given this and given sort of the ex…stop
that…given the explanation that Derek gave, which was a good ex-
planation of how the game worked, how many of you predicted that
it would be a fair game? John, would you say fair game to start out?

[teacher puts up a screen shot from the game with a probability tree]
2. John: Yeah.
3. Teacher: Why?  If you just look at the set up of it.
4. John: Because they each have an equal chance of winning. There’s four

ways that the coins can land. And the Jumbles can win two of them
and the Twins can win two of them.

5. Teacher: What do you mean four ways for them to land?
6. John: There’s heads tails, tails heads, tails tails, and heads heads.
7. Teacher: So these four here? [points to the probability tree] And what did

you say about two of them?
8. John: The jumbles can win two heads tails, tails heads, and the twins can

win two which are heads heads, and tails tails.

Excerpt 5 takes place during a whole-class discussion following the Two-Coin
Game. Even though this interaction only involves the teacher and one student,
John, the conversation has implications for the class as a learning community as
well as Rosa’s future investigations. For both Rosa and the rest of the class, this is
the first public production of a way of reasoning that will eventually become the
community’s norm.

In Excerpt 5, the teacher changes the nature of the activity by introducing a hy-
pothetical situation in which the students are not allowed to produce empirical data
to induce that the game is fair. In response, John invents a practice that involves
comparing the quantity of outcomes for each team.5 The instructional move that
leads to this interaction was largely an insight of the teacher. We provided the
teacher with a number of overheads that addressed the outcome space and sug-
gested that he encourage the students to discuss the relevance of the outcome
space. However, we did not provide any sort of script that addressed how to work
this topic into the conversation.
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In this example, the shift from descriptive models of data to prospective models
for reasoning was initiated by the teacher’s involvement. By proposing a “what-if”
scenario, the teacher changes the interactional context in two important ways.
First, the teacher limits the set of representations from which the students can draw
by limiting them to using the set up of the game represented by a probability tree
placed on an overhead projector. Second, the teacher limits the set of permitted ac-
tions that the students could perform within the situation by cutting off any empiri-
cal investigations to determine the probabilities. This second limitation is critical
because it facilitates the move from modeling empirical data—specific to a partic-
ular situation—to a prospective practice that can be applied to a wide array of situ-
ations. In these two ways the teacher is modeling the use of the probability tree as a
tool for concretizing the abstract outcome space and simultaneously pushing the
students to consider the value of constructing a model for reasoning.

Within the class, John’s method is the first time anyone has publicly counted out-
comes todetermine if thegameis fair. Indoingso,hecreatedanewfunction forama-
terial tool that had up to that point been used by the students mainly as a game board
to keep track of which team scored (Enyedy, Vahey, & Gifford, 1998). John’s model
fordeterminingfairnessemerges fromacombinationof factors.Saxe’s (1991,2002)
emergentgoals isauseful framework tohelpexplain theemergenceof this important
shift. First, it emerges as a new goal that is taken up by John through his interaction
with the teacher (i.e., todetermine the fairnessof thegamewithoutdata).Second, the
detailsof themodel itself aregenerated interactivelywith the teacherover sevencon-
versational turns. Third, certain participation structures and discourse practices,
such as providing warrants and backings for claims, shape their interaction. Fourth,
the tree provides a material anchor for the conversation and actions that generate a
solution. Fifth, John’s and the class’ prior history contribute important constraints
and checks on the model. In this case, because the class had already decided collec-
tively that the game was fair based on the data, the new method also had to lead to the
same conclusion. The combination of these factors helps explain the infrastructure
that makes John’s creative leap forward possible.

For the development of the community’s mathematical practices, and for indi-
vidual students who will come to adopt this method, this interaction marks a signif-
icant change in the available ways of reasoning about probabilistic situations. For
Rosa, at least, this seems to hold true. The next day, she used this newly established
mathematical practice to reason about a game she is encountering for the first time.
A possible explanation is that her passive participation in the discussion, combined
with her active participation with the software and her partner, was sufficient to ini-
tiate this conceptual change. If true, this is a perfect illustration of Vygotsky’s ge-
netic law of cultural development in action. Rosa’s participation with others, and in
particular with John as more competent other, leads to the genesis of Rosa’s con-
ceptual change. This change in reasoning is first seen in social interaction, in her
interaction with Mike, and later is seen in her solitary competence on the posttest.
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Day 3: Local Interactions as a
Mechanism for Propagation

John’s public explanation, however, was not enough to align everyone’s reason-
ing with this new practice immediately. Many of the students needed further op-
portunities to understand the relevance of the outcome space. Other studies have
demonstrated the value of opportunities to apply and practice what is learned
through collaboration, but these studies have only examined the cases wherein in-
dividuals, in isolation, practice the skills they have learned collaboratively (Webb,
1989, 1994). In the next example, I show how collaboration can be valuable to
more advanced students as a context for practicing a learned skill by teaching it
and simultaneously valuable for the less advanced student as a context for learning.

Cycling back to the local social configuration also played a critical role in the
propagation of the practice throughout the class. When students began their local
investigations of the next game, arguments between students became opportunities
for one student to discipline another in the use of the practice of counting the out-
comes in the outcome space. Students’ local investigations were transformed by
the students’shared history. Before, collaboration in the local investigations served
to explicate a model of the game. Now, student collaboration at the computer was
an opportunity to establish and practice the community’s shared ways of reason-
ing. A clear example of this sort of teaching and learning moment (cf. Hall & Ru-
bin, 1998) in which one student models for another how to use the practice in this
new situation is shown in Excerpt 6.

In Excerpt 6, Rosa—now paired with a new partner, Mike—uses a disagree-
ment about the game’s fairness as an opportunity to teach him the classroom prac-
tice of quantifying the outcome space. In the Three-Coin Game, two teams—team
A and team B—compete for points. The outcome of three consecutive coin flips
determines which team scores a point. Team A scores a point on five of the eight
possible outcomes. Team B scores on the remaining three outcomes (see Figure 4).
This game is mathematically unfair because team A scores on more outcomes than
team B. The Three-Coin Game was designed to highlight the importance of the
partitioned outcome space in determining the probability of an event or judging the
fairness of a game of chance.

Excerpt6:Rosa teachesMike theclassroompracticeofcounting theoutcomespace.

1. Mike: Oh! Okay, do you think the game is fair. We think the game is fair.
Go to, um…[points to the radio button for “Fair Game”]

2. Rosa:s No we don’t!
3. Mike: We don’t think it’s fair?
4. Rosa: No! Because lookit, 1, 2, 3, 4, 5. [points to each outcome as she

counts] They get five chances and B only gets three chances.
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5. Mike: All right, um, unfair, unfair. [recounts outcomes]
6. Rosa: In favor of team B, I mean team A. Right?
7. Mike: We think this team is unfair in favor of team A, okay. We think…

Um, that A will win more often because…because…
8. Mike: [Typed: We think the team A will win more often because A has

the anveng of the B] [He meant to type advantage.]

In this short interaction, Rosa claims the game is unfair because team A has
more chances. In her public reproduction6 of her inference, she seems to equate
fairness with each team owning an equal number of outcomes. Her procedure for
comparing the teams’ outcomes involves three steps. First, by counting off team
A’s outcomes in turn 4, she implicitly parses the outcomes into two classes, team A
and team B. Second, with the same utterance she compares the quantities for these
two classes. In turn 4, Rosa associates each team with a single number correspond-
ing to their total number of outcomes, “they get five chances and B only gets three
chances.” This utterance reduces the complexity of the situation by eliminating the
relevance of which particular outcomes belong to which team. Third, in turn 6, she
provides the outcome of her comparison of the two quantities. It is significant that
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this turn is a correction of Mike’s reproduction of her reasoning. In turn 6, Rosa
elaborates on Mike’s turn and demonstrates a more complete conclusion. She im-
plies that it is important to know more than that the two partitions are unequal, but
that you also need to know in which direction the inequality lies. With the method
for reasoning established publicly, Mike is able to continue the interaction and
make the appropriate inference. Furthermore, he produces a written justification
that is consistent with that inference, that team A will win more often because they
have more outcomes.

This case study has shown the way participation was transformed as it moved
across different social configurations and how these transformations contributed to
both individual conceptual change and the development of community practices.
Each configuration for interaction (a) provided unique contributions to these indi-
vidual and collective processes of development, and (b) built on the shared history
of local pairs of students and the class as a learning community.

Case 2, Derek and Will: A Detailed Account
of Social Performance Before Competence

The purpose of this second case is not to argue for the generalizability of these
findings but to further explicate the importance of the interplay between different
social configurations and expand on the ways in which one discourse practice con-
tributes to that interplay. For this analysis, I focus on an argument that occurred be-
tween two students, Derek and Will, as they engaged in the Three-Coin Game (de-
scribed in the previous case and Figure 4). They stretch their argument across two
different activities—making predictions and interpreting data—within a single so-
cial configuration—their local investigation of the game. Their argument takes on
different characteristics in the two activities, and both parts of the argument ad-
vance their learning in different ways. First, by collaboratively making a public
prediction, they create an intersubjective disparity—a difference of opinion that
organizes their subsequent interaction. Second, in the context of the data and dis-
plays generated by the computer simulation, they are able to coordinate a number
of resources to converge on a common understanding of the game and resolve (to
some degree) their differences in understanding.

This series of interactions establishes an example of competence that can be
traced back to social interaction, in this case social conflict. I show how one boy’s
reasoning, Derek’s, is reorganized by participating in this argument with his part-
ner. Unlike Piaget’s (1932, 1983, 1985) account of peer interaction leading to cog-
nitive conflict, it is not Derek’s reflection on the differences between Will and his
own opinion that leads to this reorganization as much as it is the social pressure to
resolve their disagreement. It is the public nature of the disagreement that calls out
for the production of justifications and evidence (in fact, as I show next, it is his
partner, Will, who literally calls out for a justification). Furthermore, it is in social
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interaction where these justifications and other productive learning behaviors are
produced and elaborated.

In the first prediction question of this game, Will and Derek articulate a jointly
constructed prediction that the game is unfair.

In turn 1 of Excerpt 7, Derek explicitly states that the game is unfair. In turn 2,
Will silently, but visibly, counts up the outcomes along the bottom row of the prob-
ability tree with his finger and apparently elaborates on Derek’s statement by add-
ing that team A will win more often. In turns 3–7, both students jointly construct
the statement that team A has more opportunity. Their prediction, on its surface, is
entirely consistent with the normative view that team A has more outcomes (or, as
Will and Derek said, “slots” or “opportunity”).

Excerpt 7: Derek and Will predict the game is unfair because team A has more
opportunity.

1. Derek: We think the game is unfair. ==We think that the game—team A
will win more often because==

2. Will: [talking at the same time at the same pace as Derek] ==We think
that team A—…will win more often because== [points to team
A’s outcomes as he counts along the bottom row]

3. Derek: ==It, I mean they=
4. Will: =have more…have more
5. Derek: Have…more=
6. Will: =more slots.
7. Derek: Opportunity.
8. Derek: [Typed: We think the team A will win more often because they

have more opportunity.]

A Disagreement Becomes Visible

The third prediction (I have omitted the second prediction question because it is
not relevant to the current analysis) question asks the students to show how often
each team will score by dragging the bars on a bar chart to the height they expect
them to reach during the game. Their response to this question is a turning point in
this activity because it is the first time that the two students explicitly discuss their
different expectations for the simulation.

In Excerpt 8, Derek immediately drags team B’s bar higher than team A’s bar,
which conflicts with what Will expected their prediction to be. Derek also states he
thinks that Team B will win (turn 3). Derek’s justification for this conclusion, how-
ever, is complicated and requires some additional context to understand.
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Excerpt 8: Will argues with Derek about Derek’s prediction.

1. Derek: [Singing] Hee Haw the (douche) straight like that…straight like
that. [Moves B’s bar higher than A’s bar] That’s an “O” “G” call

2. Will: Why you put B? You say that. [points to the bottom row of the
probability tree and traces across the outcomes]

3. Derek: I think B is gonna win. And you see all the other times I win…Like
with the bunny*—had more opportunity. [*referring to an earlier
game in which a rabbit and a horse were competing for points]

4. Will: =The horse, yeah, I know that. I know that. But you shoulda put, on
the first one, you said you think A will win because they have more
op-por-tun-ity.

5. Derek: No, I didn’t say A would win. I think the game is unfair in A’s fa-
vor, because they have more opportunity=

6. Will: =True that, true that, true that.
7. Derek: Saying douche here. Douche here.
8. Will: Yeah.
9. Derek: Yeah. Mickey Dee’s

10. Will: Yeah.
11. Derek: I’m hungry.
12. Will: Me too.
13. Derek: Mickey Dee’s in the house.
14. Will: Mickey Dee’s in the house.
15. Derek: I be grubbing.
16. Will: Mickey Dee’s in my mouth.

17. Derek &
Will: [Laughter] [teacher walks by and laughter stops]

18. Derek: [Derek begins typing] Well…Because we…have, how do you
spell experience?

19. Will: E-e-x-p-e-r-e-r-i-m-e-n-t. Experiment.
20. Derek: Because we have experimented.
21. Will: Is that how you spell it? [directed to the teacher, who is walking by]
22. Teacher: Perfect. So B’s winning?
23. Will: Yeah, on the Try thing. Well, Derek was making B win, but
24. Derek: Don’t even worry about that. What you wanna do here, you gonna

agree?
25. Will: I’m gonna disagree. [moves agreement bar to disagree]
26. Derek: [Typed: We think Team B will score more points because we have

experimented with it all ready.]

Will is apparently applying the normative practice of counting outcomes that
was introduced in the previous whole-class discussion. In the previous interaction
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(Excerpt 7, turns 2–6), he has visibly counted these outcomes and stated his expec-
tation that team A will win more often because they have more slots.

Derek’s interpretation, however, differs in two important ways. First, Derek has in-
terpreted the phrase “in favor of” in the opposite way than his partner. Instead of inter-
preting the phrase to mean that the game favors one team, he has interpreted it to mean
that the unfairness is pointed in the direction of that team. So in turn 5 when he says,
“No, I didn’t say A would win. I think the game is unfair in A’s favor,” he means that
team A is the recipient of the unfairness and thus less likely to win the game. This mis-
understanding points to the importance of the written texts that are resources for the
students to understand the games and each other. It also reveals the active, and some-
times unpredictable, construction of meaning that is going on around every phrase.

The second point that the two students disagree about is their interpretation of
the ramifications of the unequally partitioned outcome space. Note that both stu-
dents are aware that the distribution of outcomes is unequally distributed between
the two teams. Furthermore, they both agree that this makes the game unfair. The
point of contention is that Derek thinks the team with fewer outcomes will win the
game, whereas Will believes the opposite is true. To understand this, as Derek does
in turn 3, I present some of their shared history with an earlier PIE game. In their
first PIE activity, the Horse and Bunny Game, they experimented with the Law of
Large Numbers. The horse in this game had fewer ways to score a point than the
bunny, but the horse still won the game. Derek is remembering this experience with
the first game when he says, “And you see all the other times I win…Like with the
bunny— had more opportunity.” In turn 18, Derek’s reference to “experience” is
indexing their previous activity as evidence supporting his current claim.

The Horse and Bunny Game involves analyzing a race between two animals to
see if the rules are fair to both participants. The race’s outcome is determined by
the flip of a coin but not in any simple way. One hundred coins are flipped one at a
time. If the coin lands on heads, it is placed on the left side of a balance scale. If it
lands on tails, the coin is placed on the right side of the balance scale. The horse
moves whenever the scale is balanced (defined as when the percentage of coins
flipped so far is between 40% and 60% heads). The bunny moves whenever the
scale is unbalanced. Whoever is ahead after the 100 flips wins the race. This game
is not a fair game from the perspective of normative probability theory. Over a
large number of coin flips, the actual percentage of heads will approximate the the-
oretical probability of a coin flip (i.e., 50%). Therefore, in most cases, after a few
flips the horse will make the majority of the moves.

Derek is asserting that the scoring zones (i.e., the respective ranges when one
animal or the other moves) from the Horse and Bunny Game are analogous to the
outcomes in the Three-Coin Game, and that even though the bunny had more scor-
ing zones (i.e., a larger range—from 0% to 40% and from 60% to 100% heads), the
horse still won in the end. However, this analogy breaks down for two reasons: (a)
in the Horse and Bunny Game each scoring zone represents a large number of out-
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comes, not a single outcome; and (b) each scoring zone is not equally likely,
whereas each outcome in the Three-Coin Game is equally likely.

Will seems to agree with Derek for much of this exchange, and he even helps
construct their typed response. However, when the teacher intervenes to ask them
about their answer (turn 22), Will states that he does not believe their jointly con-
structed prediction. Here, Will misinterprets Derek’s reference about experiment-
ing to refer to their recent experimenting in the Try mode of the Three-Coin Game
instead of the Horse and Bunny Game as Derek intended. In turn 23 Will says,
“Well, Derek was making B win.” He then explicitly states that he disagrees with
their response (turn 25), “I’m gonna disagree.”

What is important about this initial exchange is that their predictions about
the game set the stage for a mathematical argument. This disagreement estab-
lishes the context for the students to run the simulation and (potentially) rectify
their disagreements. Derek and Will use the data being generated by their simu-
lation of the Three-Coin Game to continue a dispute over their predictions for
the game.

As the simulation produces and displays the data that are relevant to the dispute,
Derek and Will reinitiate the conflict (see Excerpt 9). Derek attempts to salvage
part of his prediction so that he does not lose the dispute. However, Will recreates
Derek’s full prediction and juxtaposes it with the data from the simulation in an at-
tempt to settle the dispute.

Excerpt 9: Will and Derek renew their argument in the context of empirical data.

1. Computer: At 200 turns team A is ahead. [computer plays Team A’s anima-
tion]

2. Will: A be whooping! That’s all I am gonna say.
3. Computer: Do you think the game is fair or unfair now?
4. Derek: Up yours, team A.
5. Will: What you think is this game?
6. Derek: This game is bullshit. …Well my prediction was right, this is game

isn’t—unfair. [starts new game]
7. Computer: At 20 turns team A is ahead. [computer stops and displays point to-

tals]
8. Will: Well my prediction is right cause, see at least mine was some-

where close to that prediction. You know what I am saying? The
real prediction. But yours is like, umm, totally off because team A
is way up there and team B is right there. I am like, “What’s up
with your prediction?” You know what I am saying? [Will uses
his fingers to recreate the bar chart that Derek produced as a pre-
diction to show team B scoring more points. Will then contrasts
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this with the bar chart produced by the computer which showed the
opposite trend]

9. Derek: You didn’t say, you didn’t say that team A was gonna win, you
said, “yeah that’s right”=

10. Will: = I did, I did say team A=
11. Derek: =but didn’t you agree with me? =
12. Will: = I said team A, I said team A.
13. Derek: Will, did you or did you not agree with me?
14. Will: I said team A. I said team A. [repeating this in a taunting manner]
15. Derek: Shut your (?) ass.

In this playful, but lively exchange, we see that both Derek and Will agree on
the results: Team A wins more of the games (turns 2 and 4). However, in turn 6,
Derek attempts to salvage his prediction stating, “Well my prediction was right,
this game isn’t—is unfair.” This, in effect, highlights the general statement that
the game is unfair and backgrounds Derek’s specific prediction of the direction
of that unfairness. Will, however, maintains the dispute by recreating the specific
aspect of Derek’s prediction. In turn 8, Will uses his fingers to recreate the bar
chart that Derek had produced as his prediction and contrasts it with the graph
that the computer displayed (see Figures 5A and 5B). This action over the dis-
play shows a critical way in which the representations are used to create and
maintain a dispute. The rest of the exchange merely perpetuates the dispute
without resolution.

Of particular note is the logic and structure of Will’s argument. Will’s argument
is an example of modus tollens, which is expressed formally as follows:

if P then Q
not Q
therefore not P

In this case Will argues that:
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if a prediction is “right” (P)
then the actual data will “be somewhere close to” the predicted data (Q)
Derek’s data is “totally off” (not Q)
therefore Derek’s prediction is not the “real prediction” (not P).

Given the importance of logic in succeeding in school and its general association
with intelligence in Western culture, this is a bit of impressive reasoning. The struc-
ture of Will’s argument is equally impressive. This one conversational turn contains
a well-structured argument containing a claim, a ground, a warrant, and a backing
(Toulmin, 1958). The claim is that Derek’s prediction about the game is wrong. The
ground for the claim is their shared interpretation of the publicly available bar graph
of the actual data. The warrant is the lack of a match between predicted data and ac-
tual data visibly produced by Will in front of the computer display. And the backing
(i.e., the justification for why the warrant proves the claim) is the aforementioned
logic. A substantial amount of the literature in science education discusses the bene-
fits and difficulties in fostering just this kind of a complete scientific argument (e.g.,
Duschl, 1990; Lemke, 1990; Roth et al., 1999; Wells, 1999).

Perhaps, however, the most impressive and interesting aspect of Will’s argument
is that his sophisticated reasoning is expressed informally. Rather than seeing their
colloquial and colorful language as diminishing the sophistication of the exchange, I
see it inapositive light.Theformof the talk in thisexchangespeaks to the fact that the
students are engaged with the activity in a meaningful way. They are not parroting
some phrase or faithfully following some procedure. They are having a debate, and
they are talking in a manner that makes the activity meaningful to them. This type of
discourse demonstrates that these students have a relationship with and an under-
standing of the activity that extends beyond just a schoolish exercise or the compart-
mentalized circumstances of participating in a laboratory study.

This argument, which spans the three excerpts (7–9) and is sustained for over 15
min, is particularly illustrative because it shows that students’assertions and expla-
nations have social functions as well as cognitive consequences. It was the argu-
ment that encouraged the students to make their reasoning explicit and public so
that it could be challenged, tested, and modified. Within the context of this dispute
they generate justifications of their position by referring to and acting on different
sets of representations. Will and Derek make their assertions about who they ex-
pect to win the game by manipulating bar charts. Finally, Will was able to settle the
dispute by coordinating his gestures with the bar chart display of their data to cre-
ate a visible proof that Derek’s prediction was wrong.

Furthermore, this short example shows the individual and collective nature of
both mathematical talk and representation. It also shows how talk and represen-
tation are tightly linked in student interaction. The talk was individual in that the
content of the conversation helped change the way each boy individually under-
stood the mathematics of this and future games. Both boys were exposed to new
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information and ways of interpreting the situation, and both boys were required
by their partner to justify and explain their reasoning. This led Derek to revise
the way he reasoned about the mathematics of the game. The talk was also col-
lective in that the structures for participation—how they argued, the types of
warrants that were accepted, their reactions to challenges—drew on norms es-
tablished by the classroom community and by the boys’ cultural community out-
side the classroom. For instance, if the classroom was not organized to allow for
and promote debate, the interaction just described would have never taken place.
In a classroom in which teacher-centered discourse dominated (e.g., the IRE pat-
tern of discourse common in many classrooms), the disagreement may not have
become visible; or, if it did, it may have been ignored. However, in this case, the
boys’ intellectual disagreement was taken up, pursued, and eventually resolved,
which directly contributed to their learning.

Evidence of Conceptual Change in Derek

There is some evidence that Derek7 moved from his initial beliefs of the
Two-Coin Game to eventually be attuned to the outcome space as an important re-
source in deciding if a game is fair—the primary instructional objective for this ac-
tivity set. This evidence comes later in their investigation, during the Principles
phase of the activity, when the students were asked to explain how to make a fair
game. In this case, Derek and Will make a fair game by equally dividing the eight
outcomes between the two teams.

At first, Derek appears to be playing around. Perhaps in recognition of being in-
correct about the game earlier, he rearranges the rules of the game such that team B
scores 1 point no matter how the three coins land (see Excerpt 10, turn 12). Based
on Derek’s nonverbal signals (e.g., his laughter) and his subsequent action of
unproblematically producing a fair game, it does not seem likely that Derek thinks
his first rule set constitutes a fair game. Will certainly does not think it is a fair
game and loudly protests, leading Derek to modify the rule set. Derek independ-
ently produces a rule set that has four outcomes for team A and four for team B (see
turn 27). This shows a change in the organizational logic of Derek’s reasoning—he
demonstrates that he equates fairness with an “even amount” of chances. Further
evidence for a change in Derek’s reasoning can be found in turn 7 when he counts
the outcomes that have yet to be assigned. This may indicate that he has appropri-
ated the counting practice and is using it to compare the number of outcomes as-
signed to team B and the number of outcomes available that could potentially be
assigned to team A.
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Excerpt 10: Derek and Will discuss what makes games fair and unfair as they con-
struct a fair version of the Three-Coin game.

1. Derek: Now it is up to you to you to make a fair game. ==Make your own
rules by dragging the markers to the blue boxes on the bottom of
the tree==. [singing as he from the screen]

2. Will: ==Make your own rules by dragging the markers to the blue boxes
on the bottom of the tree.== [singing as he reads from the screen]

3. Derek: Combinations for the teams. yeah, baby, gimme a hundred. [read-
ing “combinations for the teams” from the chart label on the lower
right chart] Yes in-dee-dee just the ticket. Lassie come home.
[Drags team B’s chip to assign HHH & HTH to team B. He then
moves a third team B chip towards the bottom row of the tree]

4. Will: Put it on that one right there. [pointing to THH]
5. Derek: Or HTT [moves the chip to HTT and drops it]
6. Will: No, we want that one [finger still over THH] that one be winning

right there.
7. Derek: One, two, three, four. [counting the remaining unassigned out-

comes displayed across the bottom row of the tree using the mouse
to point to each in turn]

8. Will: No, move it to that one right there. [pointing as Derek is moving all
the pieces] Hey, brother, that ain’t fair [Derek is moving all the
pieces to score for Team B]

9. Derek: This is a fair game. We got the fairest…Are you zooming in on our
game? [talking to the researcher] I picked the game, I watched it
on Sportsfocus. [he sets the rule set to BBBBBBBB, all 8 out-
comes score for team B]

10. Will: Stop playing! This boy is not making the game fair! He put it all on
B.

11. Derek:Alright, alright.
12–24: [Singing into hairbrush. They return to work when the teacher

threatens them with detention]
25. Will: They both have an even amount. [final rule set: BAABBAAB,

four outcomes for each team in a symmetrical pattern]
26. Derek:That’s what I was about to say. Both teams have an even amount.

How do you spell amount?  Kenny, how do you spell amount?
27. Derek:[Typed: Our game is fair because both team have an even amount

of chance to win a game.]

There is also evidence from other sources that indicate conceptual change in the
case of Derek. Table 1 shows a 4-point (20%) increase from the pretest to the
posttest. This is a gain of 2 standard deviations. More important, when I examined
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Derek’s answers to questions that address the outcome space and calculating the
probability of an event on the posttest, I saw that he often answered and explained
his answers appropriately. There were 14 such questions on the posttest, and he an-
swered 9 of these questions correctly. For instance, when asked what the probabil-
ity of getting three heads in a row was, he answered correctly and justified his an-
swer by enumerating all eight possible outcomes.

The theoretical importanceof thissecondcase is that ithasshownhowadiscourse
practice—arguing—was extended across different types of activity (i.e., making
predictions and interpreting the data) within a single social configuration (i.e., local
problem solving), and how the function and productivity of the discourse practice
changed with the configuration. If this interpretation of Derek’s progress is correct,
then Derek’s unassisted competence on this activity (i.e., making a fair game) can be
traced directly back to his social interaction and argument with his partner in Ex-
cerpts 8 and 9. While making their predictions, Derek and Will’s argument served to
establish and then elaborate the ways in which their understandings diverged. Dur-
ing the simulation, however, their argument served to help them converge on a single
understanding. Most important is that this example traces Derek’s successful auton-
omous performance back to his interaction with Will.

Summary of the Two Case Studies

In the first case study, which followed Rosa and Maria, I examined two social con-
figurations, each of which was associated with different types of activities. Follow-
ing the students’ local activity at the computer, we were able to trace a conceptual
shift in their reasoning—a shift from naïve intuitions about randomness and luck
to drawing inferences from data. I described their local activity as a form of data
modeling aimed at understanding what had happened. This accomplishment was
then compared to the interactions and intellectual progress that were accomplished
in the public configuration of the whole-class discussion. Here, I borrowed from
Bowers et al. (1999) who characterized the shift in reasoning as a shift from data
modeling (models of) to a generative and prospective mathematical practice of us-
ing the outcome space (model for). Finally, I showed how the local interactions
were transformed into opportunities for peer teaching and learning. This transfor-
mation would not be possible without the social process of forming community
norms within the classroom that required both the individual experience with the
software and the collective experience in the whole-class discussion.

The second case, Derek and Will expanded this notion of teaching and learning
moments. By closely examining the interactional moves within the dyad, I at-
tempted to show a second way that the outcome practice was propagated across the
classroom. In this case, it was peer argumentation that played a critical role in help-
ing one student adopt the normative practice.
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Evidence That the Case Studies are Typical

My argument is based primarily on case study data, and I am cautious
about making sweeping claims that the particular ways in which these activi-
ties and settings interacted to contribute to student learning would hold true
in other classrooms or instructional domains. The data record, however, does
establish that the specific mathematical practice of reasoning from the out-
come space was adopted by the class as a community and by the majority of
students as individuals.

Although additional research is needed to verify if the contributions of the local
investigations and whole-class discussions as presented here hold true in other
contexts, in this section I examine the evidence from this study that the learning
outcomes of the case study students are typical. To accomplish this, I briefly pres-
ent two sources of evidence that the practice of using the outcome space did indeed
successfully propagate through the classroom. These two sources of evidence are a
pretest–posttest analysis of a pen-and-paper probability test and an analysis of the
students’ final projects.

First, the pretest–posttest analysis shows that the students in the PIE curriculum
were able to apply the outcome space on the posttest successfully. Student perfor-
mance on written pretests and posttests were measured against a comparison group
taught by the same teacher. Students in both the PIE classes and comparison
classes were given paper-and-pencil pretest and posttests of the probability con-
cepts addressed by the unit. Items on these tests were derived from standardized
tests (National Center for Educational Statistics, 1994), suggestions from the
NCTM (1981), items from the research literature on probabilistic reasoning
(Konold, 1991; Tversky & Kahneman, 1982), and specific items we designed to
assess the probability intuitions relevant to the instructional objectives of the PIE.
The score for each student was based on his or her performance on the multi-
ple-choice questions (1 point each) combined with their performance on the
short-answer questions (1 point each). The short-answer questions were scored
correct if the student justified his or her answer with an appropriate mathematical
construct. Tests were scored blind by two researchers.

The PIE students significantly outperformed the comparison class. A three-way
analyses of variance (ANOVA) was carried out on three between-subject factors
on the posttest: Condition (experimental and comparison), Gender (male and fe-
male), and Standardized Test Score (split on the median for this sample). This
ANOVA revealed a significant main effect of Condition, F(1, 90) = 9.7, p < .01,
and a significant main effect of Standardized Test Score, F(1, 90) = 45.7, p < .01.
There was no main effect of Gender, F(1, 90) = 1.3, p = .25, and no interactions
were found (Vahey et al., 2000). In addition, t tests found no significant differences
between the two groups on the pretest, t(89) = .21, p > .5, but a significant differ-
ence on the posttest, t(97) = 3.4, p < .001 (see Figure 6; Vahey et al., 2000).
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In addition, the PIE students provided normative explanations to justify their
answers more frequently than did the comparison class. For instance, on the
posttest, students in the comparison class, even those who were able to calculate
the correct answer to a probability question, were more likely to justify their an-
swers with their nonnormative intuitions, such as “it is fair because anything can
happen” or “I think that anyone can land, you never know, guess and check.” Stu-
dents in the PIE group, however, were more likely to justify their answers using the
outcome space. For example, when asked if it was more likely to get a mixed out-
come when flipping three coins, one student said, “2H and 1T or 2T and 1H might
be more likely than the others their chance is six eighths or three fourths.”

Examining the students’ analysis of their own games provides a second source
of evidence that the mathematical practice of judging the probability of events
based on an analysis of the outcome space did indeed successfully propagate
throughout the classroom. An analysis the students’ final projects shows that the
majority of students in the PIE group were reasoning using outcome space by the
end of the curriculum. For the final project, students were given a number of
in-class periods to work with their partner to design a game of chance and write up
an analysis that explained why the game was fair or unfair.

Twenty-two of the 23 groups turned in a final project (95%). The games roughly
fell into two categories: races and competitions for points. In addition, the games
usually relied on a combination of two random devices to determine who moved or
scored. The most common random devices were spinners, dice, and coins. Interest-
ingly, most games were kept simple enough that the probabilities could actually be
computed theoretically using the techniques the students had developed and prac-
ticed. This is somewhat surprising in that it is easy to construct a rule set for a game

396 ENYEDY

FIGURE 6 Posttest scores.



that quickly makes the probabilities very complicated to compute. This implies the
students knew enough about their mathematical practices to create appropriate
contexts where they could be applied.

In their final projects, the students often enumerated and partitioned the out-
come space to determine the fairness of the game that they created (Tables 2 and 3).
Fifteen of the 22 final project write-ups (68%) used some representation of the out-
come space to justify their conclusion about the game’s fairness. Of these 15 pro-
jects, 12 (80%) used the outcome space successfully to come to the mathematically
correct conclusion about the game’s fairness. In contrast, all 7 of the projects that
did not use the outcome space in their analyses failed to correctly analyze their
own games (0%). Although the small sample size makes statistical inference prob-
lematic, these differences were found to be significant using a Fisher’s exact test (p
< .001). Furthermore, often more than one method was used to reference the out-
come space (this explains why the total number of correct conclusions in Table 3
add up to more than 15). Examining the correlation between correctly analyzing
the game and the specific representation of the outcome space was also revealing.
Again, although the small sample size of the analysis makes these correlations in-
conclusive, Table 3 suggests that using an equation or a probability tree to repre-
sent the outcome space was an important tool in correctly analyzing a game’s fair-
ness (based on two-tailed Pearson correlation test, p < . 05).

The analyses of the pretest and posttest and the students’ final projects establish
that the majority of students learned some of the basic concepts of probability at a
conceptual level deep enough to explain their reasoning and to use the concepts
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TABLE 2
Number of Projects That Include the Outcome Space in Their Analysis

Method for Determining Fairness Correct Conclusion Incorrect Conclusion

No mention of the outcome space 0 7
Mentions the outcome space 12 3

TABLE 3
Breakdown of How the Outcome Space was Used in Each Project

Breakdown of Outcome Space Methods
Correct

Conclusion
Incorrect

Conclusion

Equation that represented the outcome space* 7 1
Textual description of the outcome space 6 0
List or chart of the outcome space 6 2
Tree diagram of the outcome space* 4 0

*p < .05 based on two-tailed Pearson correlation.



productively in new, related contexts. The case studies outline a few of the com-
mon paths that students took as they transformed their naïve intuitions into the nor-
mative practices. In additional, the close examination of the case studies pull out
some of the theoretically relevant interactions that were critical to both the classes’
development of the community’s mathematical practices and to the individual stu-
dent’s appropriation of these practices.

DISCUSSION AND IMPLICATIONS FOR DESIGN

The major implication of this study is the value of coordinating individual and col-
lective perspectives on learning. In this case, to understand fully how students
learned how to reason successfully about games of chance, I investigated how stu-
dent-learning trajectories were stretched across a number of different activities and
social configurations, as well as the ways in which these activities built off one an-
other. In the case of the PIE, there were two complementary social configurations,
each with unique forms of participation and socially established goals that contrib-
ute to student learning.

In the first configuration, local investigations, the students explored the domain,
noticed new relevant features of the environment, and attempted to coordinate
these features in new ways to descriptively understand what was going on. The lo-
cal configuration scaffolded the students’ direct experience with probability. The
combination of making predictions and modeling the results of the simulations
provided important opportunities for knowledge construction and the adoption of
new resources for reasoning. Without these experiences, it seems unlikely that the
abstractions and mathematical practices developed later would be understood at a
conceptual level.

The analyses of the local configuration demonstrate that coordinating individ-
ual cognitive processes with the social processes within a community does not en-
tail abandoning the basic principles of constructivist learning theory. A conceptual
understanding of probability still is rooted in individuals constructing knowledge
from experience (Thompson, 2000). However, in this case, students were attempt-
ing to understand both probability and the community’s normative ways of inter-
acting with probabilistic situations. Individual students do not invent their own un-
derstanding of probability independently, and it is not merely transmitted to them
through instruction. The students’ experience in pairs, working with the software,
directed at understanding the game is contributing to the process by which students
construct meaning about why it is sensible to count up outcomes along the bottom
row of the probability tree. Furthermore, to the extent that the students begin to
adopt the cultural practice of counting, it not only changes their performance, but it
transforms how they understand probability at a conceptual level.
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In the second configuration, whole-class discussions, the students worked with
the teacher to transform their locally constructed ways of reasoning into prospec-
tive classroom practices. The classroom discussion was a critical point of transfor-
mation, not only because it was where the normative practice of using the outcome
space was publicly introduced, but also because it was the configuration that con-
nected the individual to the community. The whole-class discussion served as the
place where the findings from students’ investigations (in which they were in
charge of their own learning) were transformed into cultural norms. How the col-
lective developed this cultural norm (i.e., the practice of using the outcome space)
and how it propagated throughout the community shows the importance of giving
equal attention to the ways we design our learning environments to support the de-
velopment of learning communities as we currently do for individuals. Further-
more, these cases demonstrate the value of attending to and designing specifically
for the ways that the tools and practices that the community develops are instru-
mental in shaping the reasoning of individual members. Note that the students
were both actively involved in their own learning and actively shaping the prac-
tices of their community. It is also worth noting that these two functions were
strongly associated with two different social configurations.

What is most interesting, however, is that the interaction between the two social
configurations transformed the ways in which the students interacted in the local
interactions. By establishing taken-as-shared classroom practices, the students
transformed their local investigations from configurations for exploration into
configurations for promoting alignment. Although the configuration physically
looks the same, the students’ participation structures have changed. The roles, re-
sponsibilities, and goals change from constructing a model to make sense of what
has happened to peer teaching (and learning) to promote alignment within the
community. Accompanying this change are changes in the types of discourse and
mathematical practices that are relevant. The very nature and purpose of the con-
figuration as a context for interaction has changed.

This implies that one important consideration for design is to address how this
cycle of divergence and convergence can be orchestrated within the classroom.
When designing curricula, software, or mathematical activities, it is important to
consider how each tool, display, interaction, and activity supports one or both of
these two processes. Supporting divergence involves facilitating acts of explora-
tion, imagination, and reflection (Wenger, 1998). This was certainly the case for
Derek and Will in their local investigation. Derek, sometimes incorrectly, explored
different ways of thinking about the Three-Coin Game and attempted to connect
his current activity to his previous activity by noticing features of the current situa-
tion that could be mapped back onto his prior investigation. In his argument with
Will, we saw how Will coordinated the displays of the data to reflect on the sort of
data needed to confirm their predictions. Although this local activity ended with
local convergence (cf. Roschelle, 1992), from the perspective of the whole-class
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there were still many divergent interpretations of the game. These different local
models of the game were negotiated in the whole-class discussion leading to con-
vergence and knowledge diffusion (cf. Barab et al., 2000; Roth, 1996).

Another example of convergence was found in the last part of the first case
study. Rosa and John’s interaction showed how the same discourse practice
found in Derek and Will’s case (i.e., arguing), emerging from the same social
configuration (i.e., a local investigation grounded by the representational struc-
ture of the software), took on a dramatically different learning function be-
cause of the students’ shared history as part of the classroom community. Al-
though previously the local investigations served for the exploration of
divergent understandings, after the whole-class discussion, the local investiga-
tion served to align the students and promote convergence. This was not a de-
signed feature of the curriculum but a fortuitous and emergent feature from the
classroom implementation.

That tools, discourse practices, and activities (designed for specific purposes)
can be transformed by ongoing participation as part of a community presents a dif-
ficult dilemma for instructional design. It requires us to recognize that tools are not
static. The meaning of a tool evolves and is repurposed as part of ongoing joint par-
ticipation. This implies that one cannot dictate how a piece of software will be used
within a classroom. Even if a tool is appropriated as intended, this does not ensure
that its use will not change over time. In fact, it is likely that building in tight con-
trols over how tools are used would, in the end, be detrimental to student learning.
However, designing tools and curricula that are flexible enough to be successfully
adapted and readapted to local communities’ evolving purposes requires designers
to think in terms of trajectories of learning that span across activities, settings, and
time (cf. Cobb, Yackel, & McClain, 2000; Hall & Rubin, 1998).

This tension between personal agency and the appropriation of the normative
meanings and practices of existing tools brings me to my point. Within any activ-
ity, the cognitive and social aspects of intelligent activity are inseparable. Based on
my analyses, I hold that an important mechanism for learning in the PIE environ-
ment was the process of providing public accounts to others and that the nature and
value of these accounts differ across different social configurations. Students
learned probability by learning how to interpret and coordinate the resources pro-
vided by the PIE software. One could see this process as occurring within an indi-
vidual. However, the reason an individual attended to these resources was often so-
cial—so she could articulate, explain, and defend a claim. Furthermore, the social
goals that were driving interaction changed as a function of the students’ under-
standing of their context.

In the PIE, two critical types of student activity driven by both cognitive and so-
cial goals were (a) modeling the data produced by the simulation and (b) producing
a mathematical practice that could be used to evaluate these models. Both of these
activities encouraged students to participate in particular ways. In addition, both of
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these activities were associated with different social configurations—modeling
data with the local investigations and producing a practice with the public
whole-class discussions, respectively.

There are many factors that encourage students to engage in these kinds of mod-
eling activities. One factor identified in this article is that models often originate as
warrants to arguments. Sometimes these arguments are between students, as was
the case for Derek and Will. Sometimes these arguments are between the students
and the computer, as was the case with Rosa and Maria. In either case, the models
that students produce to back up their claims serve to make their reasoning visible
and allow their reasoning to become an object of discussion and reflection. From
the perspectives of the students, one of the likely reasons for these models to be de-
veloped into community norms for mathematical practice is that taken-as-shared
practices usually require no further explanation (Bowers et al., 1999).

Formal or scientific argumentation is a learned discourse practice in which the in-
terlocutors adopt the conversational roles of rejecting the other’s position and pro-
viding grounds for their own. During an argument, these roles often switch back and
forth depending on whose assertion is being contested in the prior turn. Providing
grounds for one’s position typically requires some type of explanation or justifica-
tion that anticipates the recipient’s reaction (Toulmin, 1958). That is, the interlocu-
torsareconstantlyprojecting theconversation into the futureduring theconstruction
of their own turn. When a speaker fails to provide an explanation for an assertion that
violates the other participants’ expectations, the speaker is often prompted to pro-
vide one (Orsolini, 1993). Because of their shared history of production and pre-
sumed intersubjective meaning, when students justify an assertion by reproducing a
recognizable practice, the assertion is usually not challenged further and is taken as
self-evident by the classroom community (Bowers et al., 1999).

At their root, then, classroom mathematical practices are developed, in part, for
the social or communicative purpose of settling disputes and not purely for their ra-
tional or cognitive value to individuals. That mathematical understandings de-
velop, in part, out of the rhetoric and discourse used to solve social disputes has a
strong resonance with the claims made by Latour (1987, 1990) based on his analy-
sis of the professional practice of scientists. Latour argued that the discipline of
science is shaped by the ways scientists make and defend knowledge claims. As
was the case for the students of the PIE, Latour (1987, 1990) went on to assert that
making these claims is not merely a matter of rational and logical evidence, but it
also depends on the networks of social and material resources that scientists can tie
together to convince others.

On the other hand, I could have reasonably analyzed these interactions from a
more traditional psychological perspective and taken the individual student as the
unit of analysis. From this perspective, the value of peer interaction would be seen
as a way of promoting cognitive conflict within each individual. This cognitive
conflict would, in turn, lead an individual to reflect about his or her current under-
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standings, and one would hope that it would also prompt the individual to attempt
to reach a new equilibrium (Piaget, 1983). This is, in fact, part of the story.

On the other hand, the perspective that I am trying to develop is that the cogni-
tive aspects of intelligent activity cannot be examined independently from the so-
cial aspects. In my analyses, peer interaction did indeed often lead to productive
conflicts. However, the resolution and value of these conflicts were both
intrapersonal and interpersonal. A purely cognitive analysis would miss that the
mechanisms for resolution are social, and the goal of the participants is often so-
cial—not cognitive—equilibrium. These case studies highlight that even in formal
schooling there are a diverse set of social structures and communicative functions
within and around which mathematics gets produced (Greeno & Hall, 1997; Hall,
1995). It is in the social formation of formal knowledge, such as this, where culture
and cognition come into contact and create one another (Cole, 1985).

A case in point is the role of the class discussion. Just how important the class
discussion was to the process of learning in the PIE curriculum was a surprise to
me. As an instructional designer, I had focussed primarily on structuring the
software to provide a rich experience and to provide a useful set of tools. My ini-
tial expectation was that the students would appropriate the abstraction of the
outcome space through their interactions with the software—the Principles sec-
tion of the software was aimed directly at helping students identify and under-
stand these abstractions. However, in both classes we studied, the construct of
the outcome space was initially raised, discussed, and elaborated only in the
whole-class discussion. It is possible that the instructional moves that we em-
bedded into the software were merely inadequate to achieve this specific shift.
However, it is my conjecture that the social goals of creating taken-as-shared
practices are inseparable from the cognitive change that eventually was
achieved. If this is true, merely replicating in the software the moves that the
teacher made in the whole-class discussion would be insufficient because they
would not set up the same social need for the collective practice. This seems to
warrant further study. It may be that there are some aspects of learning that can-
not be effectively addressed with software.

If we are to capitalize on the relationship between individual and collective pro-
cesses of learning and development, we must design our tools and activities in
ways that account for both individual processes of knowledge construction and, si-
multaneously, social processes by which participation in cultural practices creates
a meaningful context that contributes to individual activity. However, the dominant
perspectives in educational research have tended to focus on one process at the ex-
pense of the other. Researchers tend to privilege either individuals or culture.

As I attempted to demonstrate in this article, it is productive to consider how indi-
vidual and collective processes interact and co-evolve in the process of human learn-
ing. To do so, I had to examine not only students’learning, but also students’learning
trajectories. By extending my analysis beyond a single activity or social configura-
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tion, I was able to trace at least one of the points of interaction between local and pub-
lic activity—the development of and alignment with community practices.

As research continues to address learning with all its complexities and intercon-
nections intact, it is increasingly important to consider how the diversity of our the-
oretical perspectives and empirical methods can be best leveraged to inform educa-
tional practice. Although two case studies are clearly insufficient to settle all the
claims and issues raised in this article, they serve to illustrate and call attention to a
set of issues at the intersection of individual and collective processes of develop-
ment that have yet to be fully explored. It remains to be seen how far the interplay
between social configurations generalizes to other domains and other communi-
ties. However, it is at this intersection of the individual and the community that I
believe we will begin to make large strides toward a perspective on learning and
development that is better suited to inform instruction without ignoring the rich-
ness and complexity of the process.
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